
1

Presentatio
nEXIST

© Shell Services International Ltd. 2000-05-02 ISO TC184/SC4/WG10 N303 1

EXpression of Information based on logic and Set Theory

Graphical Form Version 0.5

Matthew West - Shell Services
International

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 2

Some Contributors
(whether they know it or not)

• Chris Angus
• Ian Bailey
• Allison Barnard-

Feeney
• Bill Burkett
• Bill Danner
• Julian Fowler

• Chris Partridge
• Dave Price
• Donald Sanderson
• Phil Spiby
• Bernd Wenzel
• Rob Whitesell

2

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 3

Introduction

• Purpose
– To provide the basis for integrating data from

different data models potentially with different
purposes and using different modelling languages.

• Forms of the Language
– Lexical
– XML
– Graphical (this form)
– Meta-model
– Interface Specification

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 4

Key Capabilities

• Able to support a model with different levels of
abstraction

• Able to integrate models from different modelling
languages

• Able to map between different models
• Able to make negative statements
• Able to be extended
• Sound basis on fundamental axioms only, i.e.

logic and set theory
• Multiple equivalent forms

3

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 5

Language Elements

• Base Elements
– Named Objects

• Names, namespaces, variables
– Structures

• Sets, tuples

• Set Membership
• Relations

– General relations, functions and operations

• Operators

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 6

Object

Test/aaa

Definition: Set or an Individual.

The set or individual is represented by a sign, in this
case a rectangle. A set or individual is not necessarily
uniquely represented by a single symbol.

A sign for a set or individual may include a name by
which it is known. All names must be in a name space,
in this case Test.

4

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 7

Name Spaces

Definition: set of names where each name refers to only one
object within the set.

Note: More than one name can refer to the same object.

A Name Space can have a name. This can be within another
name space.

A "/" or a is used to separate a name from its name space.

E.g. Shell/SIOM-UK, (this does not indicate that SIOM-UK
is a part of Shell)

EXIST uses the Name Space "$" for key words, where
$==EXIST/

Shell/SIOM-UK

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 8

Tuples

Test/nnnn
Definition: two or more elements that are ordered.

A tuple�s identity is defined by its elements and their
order - in other words, <Test/a, Test/b> always
represents the same tuple as <Test/a, Test/b> .

An element may be repeated in a tuple.

A tuple may not refer to itself.

There is only one tuple <Test/nnnn, Test/mmm>

The sign for a binary tuple is a block arrow (order
tail to head, e.g. <Test/nnnn, Test/mmm>).

Test/mmm

An n-tuple e.g. <Test/a, Test/b, Test/c,
Test/d>Test/a

Test/cTest/b

Test/d

5

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 9

Notes on the Tuples

• Tuples are NOT pointers.
• A tuple is NOT equivalent to a relationship in

an entity relationship model.
• For 2 Things Test/A, Test/B there are exactly

4 tuples: <Test/A, Test/A>, <Test/A, Test/B>,
<Test/B, Test/A>, <Test/B, Test/B>

• A tuple has no meaning on its own. It is given
meaning by the sets that it is a member of.

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 10

Sets

Test/A

Test/B

Test/C

Definition: number or collection of things

A set�s identity is defined by its membership (i.e. two sets with
the same members are the same set)

A Thing cannot have repeated membership of a set.

A set 's membership (extent) is symbolised by the attached
dotted box, {Test/A, Test/B, Test/C}.

Unlike a tuple, a set is not ordered, so {Test/A, Test/B,
Test/C} is the same set as {Test/C, Test/B, Test/A}.

Test/ABC

The set is linked to its extent through an identity tuple e.g.
[Test/ABC == {Test/A,Test/B,Test/C}]

6

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 11

Set Membership

Test/P101

Test/Pump

Test/Equipment
Type

When not all the members of the set are shown, then a stacked
unnamed sign is shown to indicate that there are other members.

[Test/Pump == {Test/P101, �}]

In the text version, the dots indicate the existence of other
members.

Set/Class membership is non-transitive. When one set is a
member of another, this is indicated by the solid box representing
the whole set being in the extent of the set it is a member of.

Thus whilst P101 is a member of the set Pumps, and Pumps is a
member of the set Equipment Types, P101 is not a member of
Equipment Types.

[Test/Equipment Types == {Test/Pump, �}]

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 12

Set Membership

Test/P101

Test/Pump

Test/Equipment
Type

When it is only desired to indicate that one thing is a member of a
set or class, then an arrow is used graphically, going from class to
member, and lexically a ":" is used. This is just a simplified form
of the previous notation.

[Test/Pump: Test/P101],

[Test/Equipment Types: Test/Pump]

7

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 13

Unbound Variables

An unbound variable is indicated by an oval without a name with
its membership of a set indicated either by a set-extent sign, or by
a set membership arrow. The lexical equivalent is:

%Test/Pump%

Test/Pump

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 14

Bound Variables

A bound variable is indicated by an oval with a name. Its
membership of a set is indicated either by a set-extent sign, or by
a set membership arrow. The lexical equivalent is:

Test/Pump == {%X }

Test/Pump: %Y

A bound variable necessarily refers to the same thing in different
references to the variable. The type over which the variable can
range is also indicated.

X

Test/Pump

Y

Z

8

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 15

Example of use of Variables

As an example consider the definition of the types allowed
in a car engine assembly tuple.

[Test/Car Engine Assembly: <%Test/Car%,
%Test/Engine%>]

Test/Car

Test/Engine

Test/Car
Engine

Assembly

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 16

Relations

A Relation is a classification of a tuple. The
roles played by the elements of the tuple
are indicated by defining a constraint on
the membership of the elements of the
tuple through unbound variables.

Functions are relations which obey
particular constraints, in that the mapping
form the domain to the image is unique.

Test/Com position

Test/Part (of)
Test/W hole

(for)

Test/my
car

Test/my
engine

9

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 17

Complex Relations

man

husband

husband of

husband of M ary

wife

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 18

Operator

An Operator is a way of
representing a function with one or
two inputs and one output.

The Ellipse signifies the result of
the operation, which can participate
in other tuples.

Test/B

Test/A

.$union.

Test/C

$subset

10

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 19

Unary Operator

A unary operator such as .$not.
Uses a tuple with only one element.

Test/A

.$not.

Test/C

.$and.

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 20

=1

Cardinality

Cardinality is formally represented
as an equation. Test/A is the set
whose cardinality (number of
members) is being defined.

Test/A

.$cardinality.

1

.$equals.

Test/A

Since cardinality is a frequent
construct, a shorthand form is
provided.

11

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 21

Literals

Definition: encoding which can be held in a computer in a
(presumably) binary format

The Literal &'SIOM-UK'&. This refers to the Literal SIOM-
UK rather than what the name represents.

The possible delimiters are ', ", or &' and '&.

Literals are members of classes that denote their type e.g.
ASCII, Unicode IEEE numbers. The presentation form in
EXIST is for humans.

Numbers are shown as literals.

SIOM-UK

1

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 22

Identity

A

Test/B

Test/A Definition: signs that refer to the same thing, e.g.
[Test/A==Test/B].

This is used e.g. in showing a name in one model refers to the
same object as a name in another model.

Exist also allows a graphical sign to be repeated for
diagramming convenience. The two signs may be linked by a
chain line (dash dot).Test/A

12

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 23

Models

A Model is a set of EXIST statements. One model may
be a subset of another model.

[$model: model/model A]

[model/model A == {

[test/equipment type == {test/pump, �}],

[test/pump == {test/P101, �}]

}]

Models may be combined to form a larger model using
the union operator.

test/P101

test/pump

test/equipment type

model/model A

$model

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 24

Mapping

A mapping declares that the statements made by one model
are equivalent to the statements made by another model.
Equality and identity relations show how to map.

[test1/car model = test2/auto model]

[test1/car == test2/auto]

test1/car

test2/auto

Model/car model

test/auto model

13

© Shell Services International Ltd.

Presentatio
nEXIST

2000-05-02 ISO TC184/SC4/WG10 N303 25

Issues

• Is a Model a set of asserted propositions?

